Школа для Электрика. Все Секреты Мастерства. Образовательный сайт по электротехнике  
ElectricalSchool.info - большой образовательный проект на тему электричества и его использования. С помощью нашего сайта вы не только поймете, но и полюбите электротехнику, электронику и автоматику!
Электрические и магнитные явления в природе, науке и технике. Современная электроэнергетика, устройство электрических приборов, аппаратов и установок, промышленное электрооборудование и системы электроснабжения, электрический привод, альтернативные источники энергии и многое другое.
 
Школа для электрика | Правила электробезопасности | Электротехника | Электроника | Провода и кабели | Электрические схемы
Про электричество | Автоматизация | Тренды, актуальные вопросы | Обучение электриков | Контакты



Изучайте основы электротехники на нашем сайте и освоите методы расчетов, различные типы систем и применение электротехнических устройств. Раздел "Основы электротехники" поможет вам укрепить ваши знания и развить навыки в этой захватывающей области.

 

База знаний | Избранные статьи | Эксплуатация электрооборудования | Электроснабжение
Электрические аппараты | Электрические машины | Электропривод | Электрическое освещение

 Школа для электрика / Справочник электрика / Основы электротехники / Режимы работы электрической цепи


 Школа для электрика в Telegram

Режимы работы электрической цепи



Режимы работы электрической цепиДля электрической цепи наиболее характерными являются режимы нагрузочный, холостого хода и короткого замыкания.

Нагрузочный режим. Рассмотрим работу электрической цепи при подключении к источнику какого-либо приемника с сопротивлением R (резистора, электрической лампы и т. п.).

На основании закона Ома э. д. с. источника равна сумме напряжений IR на внешнем участке цепи и IR0 на внутреннем сопротивлении источника:

Учитывая, что напряжение Uи и на зажимах источника равно падению напряжения IR во внешней цепи, получим:

Эта формула показывает, что э. д. с. источника больше напряжения на его зажимах на значение падения напряжения внутри источника. Падение напряжения IR0 внутри источника зависит от тока в цепи I (тока нагрузки), который определяется сопротивлением R приемника. Чем больше будет ток нагрузки, тем меньше напряжение на зажимах источника:

Падение напряжения в источнике зависит также и от внутреннего сопротивления R0. Зависимость напряжения Uи от тока I изображается прямой линией (рис. 1). Эту зависимость называют внешней характеристикой источника.

Пример 1. Определить напряжение на зажимах генератора при токе нагрузки 1200 А, если его э. д. с. равна 640 В, а внутреннее сопротивление 0,1 Ом.

Решение. Падение напряжения во внутреннем сопротивлении генератора

Напряжение на зажимах генератора


Из всех возможных нагрузочных режимов наиболее важным является номинальный. Номинальным называется режим работы, установленный заводом-изготовителем для данного электротехнического устройства в соответствии с предъявляемыми к нему техническими требованиями. Он характеризуется номинальными напряжением, током (точка Н на рис. 1) и мощностью. Эти величины обычно указывают в паспорте данного устройства.

От номинального напряжения зависит качество электрической изоляции электротехнических установок, а от номинального тока — температура их нагрева, которая определяет площадь поперечного сечения проводников, теплостойкость применяемой изоляции и интенсивность охлаждения установки. Превышение номинального тока в течение длительного времени может привести к выходу из строя установки.

Рис. 1. Внешняя характеристика источника

Режим холостого хода. При этом режиме присоединенная к источнику электрическая цепь разомкнута, т. е. тока в цепи нет. В этом случае внутреннее падение напряжения IR0 будет равно нулю

Таким образом, в режиме холостого хода напряжение на зажимах источника электрической энергии равно его э. д. с. (точка X на рис. 1). Это обстоятельство можно использовать для измерения э. д. с. источников электроэнергии.

Режим короткого замыкания. Коротким замыканием (к. з.) называют такой режим работы источника, когда его зажимы замкнуты проводником, сопротивление которого можно считать равным нулю. Практически к. з. возникает при соединении друг с другом проводов, связывающих источник с приемником, так как эти провода имеют обычно незначительное сопротивление и его можно принять равным нулю.

Короткое замыкание может происходить в результате неправильных действий персонала, обслуживающего электротехнические установки, или при повреждении изоляции проводов. В последнем случае эти провода могут соединяться через землю, имеющую весьма малое сопротивление, или через окружающие металлические детали (корпуса электрических машин и аппаратов, элементы кузова локомотива и пр.).

При коротком замыкании ток

Ввиду того что внутреннее сопротивление источника R0 обычно очень мало, проходящий через него ток возрастает до весьма больших значений. Напряжение же в месте короткого замыкания становится равным нулю (точка K на рис. 1), т. е. электрическая энергия на участок электрической цепи, расположенный за местом короткого замыкания, поступать не будет.

Пример 2. Определить ток короткого замыкания генератора, если его э. д. с. равна 640 В и внутреннее сопротивление 0,1 Ом.

Решение.

По формуле

Короткое замыкание является аварийным режимом, так как возникающий при этом большой ток может привести в негодность как сам источник, так и включенные в цепь приборы, аппараты и провода. Лишь для некоторых специальных генераторов, например сварочных, короткое замыкание не представляет опасности и является рабочим режимом.

В электрической цепи ток проходит всегда от точек цепи, находящихся под большим потенциалом, к точкам, находящимся под меньшим потенциалом. Если какая-либо точка цепи соединена с землей, то потенциал ее принимается равным нулю. В этом случае потенциалы всех других точек цепи будут равны напряжениям, действующим между этими точками и землей.

По мере приближения к заземленной точке уменьшаются потенциалы различных точек цепи, т. е. напряжения, действующие между этими точками и землей. По этой причине обмотки возбуждения тяговых двигателей и вспомогательных машин, в которых при резких изменениях тока могут возникать большие перенапряжения, стараются включать в силовую цепь ближе к “земле” (за обмоткой якоря).

В этом случае на изоляцию этих обмоток будет действовать меньшее напряжение, чем если бы они были включены ближе к контактной сети на электровозах постоянного тока или к незаземленному полюсу выпрямительной установки на электровозах переменного тока (т. е. находились бы под более высоким потенциалом). Точно также точки электрической цепи, находящиеся под более высоким потенциалом, являются более опасными для человека, соприкасающегося с токоведущими частями электрических установок. При этом он попадает под более высокое напряжение по отношению к земле.

Следует отметить, что при заземлении одной точки электрической цепи распределение токов в ней не изменяется, так как при этом не образуется никаких новых ветвей, по которым могли бы протекать токи. Если заземлить две (или больше) точки цепи, имеющие разные потенциалы, то через землю образуются дополнительная токопроводящая ветвь (или ветви) и распределение тока в цепи меняется.

Следовательно, нарушение или пробой изоляции электрической установки, одна из точек которой заземлена, создает контур, по которому проходит ток, представляющий собой, по сути дела, ток короткого замыкания. То же происходит в незаземленной электрической установке при замыкании на землю двух ее точек. При разрыве электрической цепи все ее точки до места разрыва оказываются под одним и тем же потенциалом.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика