Электротехника связывает природу электричества со строением вещества и объясняет его движением свободных заряженных частиц под воздействием энергетического поля.
Для того чтобы электрический ток протекал по цепи и совершал работу, необходимо иметь источник энергии, совершающий преобразование в электричество:
механической энергии вращения роторов генераторов;
протекания химических процессов или реакций внутри гальванических приборов и аккумуляторов;
теплоты в терморегуляторах;
магнитных полей в магнитогидродинамических генераторах;
световой энергии в фотоэлементах.
Все они обладают различными характеристиками. Чтобы классифицировать и описать их параметры принято условное теоретическое разделение на источники:
тока;
ЭДС.
Электрический ток в металлическом проводнике
Определение силы тока и электродвижущей силы в 18-м веке дали известные физики того времени.
Источник ЭДС
Им считается идеальный источник, представляющий собой двухполюсник, на зажимах которого электродвижущая сила (и напряжение) всегда поддерживается постоянным значением. На него не влияет нагрузка сети, а внутреннее сопротивление у источника равно нулю.
На схемах он обычно обозначается кругом с буквой «Е» и стрелкой внутри, показывающей положительное направление ЭДС (в сторону увеличения внутреннего потенциала источника).
Схемы обозначения и вольт-амперные характеристики источников ЭДС
Теоретически на выводах у идеального источника напряжение не зависит от величины тока нагрузки и является постоянной величиной. Однако, это условная абстракция, которая не может быть осуществлена на практике. У реального источника при увеличении тока нагрузки значение напряжения на зажимах всегда уменьшается.
На графике видно, что ЭДС Е состоит из суммы падений напряжения на внутреннем сопротивлении источника и нагрузке.
В действительности источниками напряжения работают различные химические и гальванические элементы, аккумуляторные батареи, электрические сети. Их разделяют на источники:
постоянного и переменного напряжения;
управляемые напряжением или током.
Источники тока
Ими называют двухполюсники, создающий ток, который является строго постоянной величиной и никак не зависит от значения сопротивления на подключенной нагрузке, а внутреннее сопротивление его приближается к бесконечности. Это тоже теоретическое допущение, которое на практике не может быть достигнуто.
Схемы обозначения и вольт-амперная характеристика источника тока
Для идеального источника тока напряжение на его клеммах и мощность зависят только от сопротивления подключенной внешней схемы. При этом с увеличением сопротивления они возрастают.
Реальный источник тока отличается от идеального значением внутреннего сопротивления.
Примерами источника тока могут служить:
Вторичные обмотки трансформаторов тока, подключенных в первичную схему нагрузки своей силовой обмоткой. Все вторичные цепи работают в режиме надежного шунтирования. Размыкать их нельзя — иначе возникнут перенапряжения в схеме.
Катушки индуктивности, по которым проходил ток в течение некоторого времени после снятия питания со схемы. Быстрое отключение индуктивной нагрузки (резкое возрастание сопротивления) может привести к пробою зазора.
Генератор тока, собранный на биполярных транзисторах, управляемый напряжением или током.
В различной литературе источники тока и напряжения могут обозначаться неодинаково.
Виды обозначений источников тока и напряжения на схемах
Читайте также по этой теме: Внешняя характеристика источника ЭДС